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1 Generalized Likelihood Ratio Tests, Asymptotic Relative
Efficiency, and Pearson’s χ2 Test

1.1 Recap: Likelihood-ratio based hypothesis tests

We have been assuming a parametric model X1, . . . , Xn
iid∼ pθ0(x), where θ0 ∈ Θo ⊆ Rd.

pθ(x) sufficiently regular in θ. We have the MLE

θ̂ = arg max
θ∈Θ

`n(θ;X),

which we assume converges in probability to θ0. The central limit theorem tells us that

1√
n
∇`n(θ0;X) =⇒ nd(0, J1(θ0)),

where we can think of ∇`n as a complete sufficient statistic for all the likelihood ratios.
We had the Taylor expansion

0 = ∇`n(θ̂n) = ∇`n(θ0) +∇2`n(θ̃n)(θ̂n − θ0),

which told us that

√
n(θ̂n − θ0) =

(
− 1

n
∇2`n(θ̃n)

)−1

︸ ︷︷ ︸
p−→J1(θ0)−1

1√
n
∇`n(θ0)︸ ︷︷ ︸

=⇒ N(0,J1(θ0))

=⇒ Nd(0, J1(θ0)−1).

We have following picture of the second order Taylor approximation of the log-likelihood

`n(θ)− `n(θ0) ≈ ˙̀
n(θ0)(θ − θ0)− 1

2
Jn(θ0)(θ − θ0)2.
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Different parts of this picture give us different likelihood-based test statistics for hypothesis
testing.

For large n,
2(`n(θ̂n)− `n(θ0)) ≈ ‖J1/2

n (θ̂n − θ0)‖2,

which gives us the Wald test. Looking at

2(`n(θ̂n)− `n(θ0)) ≈ ‖Jn(θ0)−1/2∇`n(θ0)‖2,

gives us the score test, and

2(`n(θ̂n)− `n(θ0)) ≈ ‖Jn(θ)1/2(θ̂n − θ0)‖2,

gives us the generalized likelihood ratio test. This is looking at the vertical distance in the
above picture.

1.2 Generalized likelihood ratio tests

1.2.1 GLRT with a simple null

Suppose we want to test H0 : θ = θ0 vs H1 : θ 6= θ0. We have

`n(θ0)− `n(θ̂n) =���
��:0

∇`n(θ̂n) +
1

2
(θ0 − θ̂n)−1∇2`n(θ̃n)(θ0 − θ̂n)

= −1

2
‖ (− 1

n∇
2`n(θ̃n))1/2︸ ︷︷ ︸

p−→J1(θ0)1/2

√
n(θ0 − θ̂n)︸ ︷︷ ︸

=⇒ Nd(0,J1(θ0)−1)

‖2

=⇒ −1

2
χ2
d.
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This means that
2(`n(θ̂n)− `n(θ0)) =⇒ χ2

d.

We should reject θ0 if and only if

`n(θ0) ≤ `n(θ̂n)− 1

2
χ2
d(α).

This has some of the advantages of the Wald test, such as invariance under parameteriza-
tion, but without requiring the confidence set to always be an ellipsoid.

1.2.2 GLRT with a composite null or with nuisance parameters

Theorem 1.1. Suppose we are testing H0 : θ ∈ Θ0 vs H1 : θ /∈ Θ0. Assume that

• Θ ⊆ Rd, where Θ0 ⊆ Θ is a d0-dimensional manifold contained in Θo.

• θ0 is in the relative interior of Θ0.

• θ̂n
p−→ θ0 with smooth likelihood.

• J1(θ) � 0.

Then
2(`n(θ̂n)− `n(θ̂0)) =⇒ χ2

d−d0 ,

where θ̂0 = arg maxθ∈Θ0
`n(θ;X).

Here is an informal derivation.

Proof. Assume without loss of generality that θ0 = 0 and J1(0) = Id. Then θ̂n ≈
Nd(0,

1
nId), and locally (θ ≈ 0), ∇2`n(θ) ≈ −nId. Then

`n(θ)− `n(θ̂n) ≈ n

2
‖θ − θ̂n‖2.

Then
θ̂0 ≈ arg min

θ∈Θ0

‖θ − θ̂n‖2 = ProjΘ0
(θ̂n).

This means that −1 times the test statistic looks like

2(`n(θ̂0)− `(θ̂n)) ≈ −n‖θ̂n − ProjΘ0
(θ̂n)‖2

= −‖Proj⊥Θ0
(
√
nθ̂n︸ ︷︷ ︸

≈N(0,Id)

)‖2

=⇒ −χ2
d−d0 .
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Here is a picture when d = 2 and d0 = 1.

The segment looks like χ2
1.

1.3 Asymptotic relative efficiency

Suppose θ̂
(i)
n with i = 1, 2 are two estimators with d = 1 and

√
n(θ̂(i)

n − θ0) =⇒ N(0, σ2
i .

Definition 1.1. The asymptotic relative efficiency (ARE) of θ̂(2) with respect to θ̂(1)

is σ2
1/σ

2
2.

This has a nice interpretation of telling us that using an inefficient estimator is really
like throwing away a fraction of our data set. Suppose σ2

1/σ
2
2 = γ ∈ (0, 1). Then

θ̂
(1)
bγnc(X1, . . . , Xbγnc) ≈ N(θ0, σ

2
2/n)

D
≈ θ̂(2)

n (X1, . . . , Xn).

1.4 Pearson’s χ2 test for goodness of fit

Let N = (N1, . . . , Nd) ∼ Multinom(n, π), where π = (π1, . . . , πd) with
∑

j πj = 1 and all
πj > 0. The multinomial density is

pθ(N) =
n!πN1

1 · · ·π
Nd
d

N1! · · ·Nd!
1{

∑
j Nj=n}.

We can parameterize this as a d− 1-parameter exponential family by

πj =


1

1+
∑
k>1 e

ηk
j = 1,

eηj

1+
∑
k>1 e

ηk
j > 1
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so that
ηj = log(πj + π1).

We can calculate the score

∇`n(η,N) = (N2, . . . , Nd)− (nπ2, . . . , nπd).

The variance of the score is

Varη(∇`n(η;N)) =


nπ2(1− π2) · · · −πiπj · · ·

. . .

nπd(1− πd)


= n(diag(π2−d)− π2−dπ

>
2−d)

If we use the formula

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
,

we get

Jn(η)−1 =
1

2
(diag(π−1

2,...,d) + π−1
1 1d11

>
d2).

After some algebra, it follows that the score test fo H0 : π = π0 vs H1 : π 6= π0 is

∇`n(η0)J−1
n (η0)∇`n(η0) = (N2,...,d − nπ2,...,d)

>( 1
n(diag(π−1

2,...,d) + π01))(N2,...,d − nπ0)

=
∑
j>1

(Nj − nπj)2

nπj
− 1

nπn
1>(N2,...,d + nπ2,...,d)

2

=
∑
j

(Nj − nπj)2

nπj
.

This is the test statistic for Pearson’s χ2 test.
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