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1 Generalized Likelihood Ratio Tests, Asymptotic Relative
Efficiency, and Pearson’s y?> Test

1.1 Recap: Likelihood-ratio based hypothesis tests

We have been assuming a parametric model Xi,..., X, iy Do, (), where 6y € ©° C R4

pe(x) sufficiently regular in §. We have the MLE

6= arg max ¢, (6; X),
0O

which we assume converges in probability to 6. The central limit theorem tells us that
1
Vn

where we can think of V/, as a complete sufficient statistic for all the likelihood ratios.
We had the Taylor expansion

Vﬁn(go; X) = nd<07 Jl(eo))v

0= Vel (6n) = V0 (00) + V200 (6,) (0, — 60),

which told us that
1

1
(B, — ) = (—iv%n@» =900

$J1(90)71 = N(0,J1(00))

— Nd(O, J1 (90)_1).

We have following picture of the second order Taylor approximation of the log-likelihood

0n(0) — u(00) = £ (00)(0 — 00) — %Jn(eo)(e 002,



N~ //J,é"ce,) (Score)

6.-8, = 7, Q)  (w-ld)

Different parts of this picture give us different likelihood-based test statistics for hypothesis
testing.
For large n,

2(6n(Bn) — £a(00)) = 19,/% (B — 60)|%,
which gives us the Wald test. Looking at

2(En(Bn) — a(60)) ~ [1.7a(60) V2V (60) 1,
gives us the score test, and
2(En(Bn) — £a(60)) = |7(6)2 (B — 60) I,
gives us the generalized likelihood ratio test. This is looking at the vertical distance in the
above picture.
1.2 Generalized likelihood ratio tests
1.2.1 GLRT with a simple null

Suppose we want to test Hg : 0 = 0y vs Hy : 0 # 0g. We have

00 (60) — W+ (60 — 0,) " V20, (6,) (80 — Br)

1

:_5”( 1v2£ 0))72 V(o — ) |

2 o)z = Na(0.1(00)71)

2Xd'



This means that R
2(Ln(0n) — £n(00)) = X?l'

We should reject g if and only if

£ (B0) < () — 5x3(0).

This has some of the advantages of the Wald test, such as invariance under parameteriza-
tion, but without requiring the confidence set to always be an ellipsoid.

1.2.2 GLRT with a composite null or with nuisance parameters

Theorem 1.1. Suppose we are testing Hy : 0 € Oy vs Hy : 0 ¢ Og. Assume that

e © CRY where ©y C O is a dy-dimensional manifold contained in ©°.

0o is in the relative interior of .
o §n LN 0y with smooth likelihood.
e J; (9) > 0.

Then

~

2(6n(0n) = €n(00)) = Xi_dy»
where By = arg maxgeg, {n(0; X).
Here is an informal derivation.

Proof. Assume without loss of generality that 6y = 0 and J;(0) = I;. Then gn R
N4(0, 214), and locally (6 ~ 0), V?(,,(0) ~ —nly. Then

00(0) — £,(0,) =~ =10 — 0,2

Then

0y ~ argmin |0 — 0, |*> = Projg, (0n)-
USSR

This means that —1 times the test statistic looks like

2(£,,(80) — £(6,)) = —n||8, — Projo, (6,)|1?
= —| Projd, ( v/nby )|
N——
~N(0,14)
= _ngdo' D



Here is a picture when d = 2 and dy = 1.

The segment looks like x3.

1.3 Asymptotic relative efficiency

Suppose @(f) with ¢ = 1,2 are two estimators with d = 1 and

Vn(@ —6y) = N(0,02.
Definition 1.1. The asymptotic relative efficiency (ARE) of 8 with respect to 6()
is 02 /03.
This has a nice interpretation of telling us that using an inefficient estimator is really
like throwing away a fraction of our data set. Suppose 0%/05 =~ € (0,1). Then

6

[y (X17 oo 7XL'ynJ) ~ N(QO’U%/TL)

RO2(X1,...,Xn).

1.4 Pearson’s x? test for goodness of fit

Let N = (Ni,...,Ng) ~ Multinom(n, 7), where 7 = (m1,...,mq) with >, m; = 1 and all
m; > 0. The multinomial density is

B n!w{vl-“ﬂNd
We can parameterize this as a d — 1-parameter exponential family by

1 s
1+Zk>_1 o J = 1,

e ;
14D s €k g>1

T =

4



so that
n; = log(mj + m1).

We can calculate the score
Vi,(n,N) = (Na,...,Ng) — (nma,...,nmq).
The variance of the score is
nmo(l —me) - —mm

Var, (Ve (n; N)) =

n7rd(1 — ﬂ'd)
= n(diag(ma—q) — T2-ams_g)
If we use the formula
Ay T AL
A Ty\—1 — A—l et
(A+uv') T ATy

we get
_ 1, .. _ _
In(n) t= §(d1ag(772,_1_.7d) +m 11d11;—2)~
After some algebra, it follows that the score test fo Hy : m = mg vs Hy : m # 7 i8
Ve (10)J,  (10)Ven(m0) = (N, ..

N; —nm;)? 1
= (Y i) 1" (Ny. g+ nma._a)?

a—nm,..a) (5 (diag(my " ;) +m01))(Na,..q — o)

1 nm; Ny,
_ (Nj — nmj)
; nm;

This is the test statistic for Pearson’s y? test.
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